背景介紹
DAO作為一個新興的技術和組織形態,有潛力改變整個社會。截至2021年3月,DAO生態系統管理資產已經達到9.3億美元,并且其中還不包含使用DAO的組織形式或者使用獨立DAO框架的加密協議。現在,它已經成為加密領域不可或缺的治理結構。
但是,目前對于DAO的研究主要關注在治理框架的定義和治理現狀的研究上,主要以理論探討和案例分析為主,這些研究雖然有用,但是還不夠支撐DAO的快速發展。DAO作為一個復雜的社會實踐,需要背后的理論框架來支撐。以多智能體建模為代表的復雜系統研究,自提出以來,發展迅速,已經在經濟學、學、社會學和生態學領域應用廣泛。復雜系統科學的目的是對系統一般屬性的理解和探討,“復雜系統“也沒有精確的定義,一般認為是由多個相互作用的部分組成的整體,而整體的行為超過了個體行為的總和,達到了一加一大于二的效果。DAO是典型的具有社會復雜性和工程復雜特性的復雜系統,而基于多智能體系統的計算機輔助研究方法已經在復雜系統領域應用多年,因此本文嘗試探討如何利用多智能體模擬的方法來進行DAO治理機制的研究。
研究問題
早在20世紀90年代,西方學者就已經將多智能體應用于復雜系統的研究當中,并發展出多樣的多智能體平臺和設計語言。依據復雜系統的研究思路,可以借助計算機從以下三個方面對DAO進行研究:
Core DAO宣布Core主網上線:據官方消息,Core DAO宣布Core主網上線。據介紹,Core網絡旨在通過充當第二個BTC區塊獎勵來維護比特幣網絡。當比特幣區塊獎勵在2040年枯竭時,Core網絡將為比特幣礦工提供獎勵,就像他們為Core做的一樣。[2023/1/14 11:12:07]
DAO中的涌現。DAO是由組織成員之間相互協作組成的新型組織,其個體之間的協作關系如何表現為DAO的整體組織形態,可以認為是DAO這個復雜系統的一個涌現現象。
DAO的臨界點和相變。DAO的硬分叉屬于DAO組織的一次系統狀態的巨大改變,可以看作是復雜系統的一種相變。相變之后會產生新的穩定狀態,也就是說,可以通過研究DAO系統的臨界狀態來觀察導致DAO分叉的因素。
DAO的多智能體建模。由于真實的DAO系統的復雜性,將其完全地還原和仿真是難以做到的。依據復雜系統的研究思路,可以通過將重要的特征抽象,以計算機模擬的形式來仿真DAO系統,以觀察和研究其中的涌現、相變和臨界狀態。
另一方面,依據DAO治理研究的內容及其研究目的,計算機輔助系統又可以用于進行以下三個方面的研究:
治理機制的可行性驗證。
治理機制的設計是一個同時具有社會復雜性和工程復雜性的任務,設計過程中很難預估其在實際系統是否有效。
國際帆船大獎賽SailGP與NEAR達成合作探索DAO治理:金色財經報道,據國際帆船大獎賽 SailGP 官方網站消息,他們已與NEAR達成合作,SailGP 將探索將在 NEAR協議上啟動 DAO,允許社區成員參與運動員選擇、團隊管理、商業化選項、運營和團隊戰略等決策。據悉,在遵守所有適用的法律和法規前提下,DAO 團隊最早可以在 2023 年第 4 賽季加入 SailGP。此外,NEAR 還將為 SailGP 提供票務、NFT、應用程序集成和游戲等服務,推動粉絲參與、數據交付和管理。[2022/9/19 7:06:47]
例如,GnosisDAO的futarchy機制,由于其提案成本問題,在第三輪投票以后被逐漸棄用。
借助于計算機輔助模擬,可以在機制投入實際環境前對其可行性進行驗證,并不斷迭代反饋改進機制的設計。
極端場景下的計算實驗。
由于DAO生態天然的復雜性,項目的可重復疊加、治理代幣之間的繁雜嵌套關系,使得DAO的復雜度遠超傳統組織。
而在極端場景下,DAO的治理機制能否按照預定的軌跡運行,則關系著DAO的穩定性及魯棒性。
使用多智能體系統,可以對治理機制在極端環境下的反應進行研究。
混合區塊鏈平臺Waves Enterprise宣布推出DAO,并將開源其整個代碼庫:5月31日消息,混合區塊鏈平臺Waves Enterprise今天宣布將轉向去中心化的治理模式,并來源其整個代碼庫。
Waves Enterprise棧和WE生態系統的進一步發展將不是由一組中心化公司管理,而是由一個企業級的DAO管理。WE DAO旨在將Waves Enterprise技術的權力、管轄權和管理權下放給治理委員會和WE生態系統的活躍成員。最初,該委員會將包括三家在區塊鏈領域擁有豐富經驗的公司——Waves Labs、Waves Association和Tokenomika。隨后,該委員會將邀請其他成員,包括依賴區塊鏈技術的企業、風險基金、安全公司等。(Business Wire)[2022/6/1 3:54:00]
治理風險的檢測及其損失的預估。
DAO治理機制的設計過程中極易引入邏輯漏洞,例如2021年7月13日,以太坊和幣安智能鏈上的借貸協議DeFiPie由于邏輯漏洞而遭受黑客攻擊,造成了PIE代幣在24小時內跌幅約66%。
這種漏洞一般很難在設計早期發現,而一旦投入應用后被發現將會造成巨大損失。
研究方法
基于計算機輔助的方法進行DAO的研究,可以選擇傳統復雜系統的建模工具,例如Netlogo、AnyLogic和Jade等。這類建模工具在復雜系統的研究中已經被大量使用,但是這類建模工具用于DAO的研究中還存在以下問題:
Tracer DAO推出創新型衍生品:去中心化衍生品協議Tracer DAO已經從Framework Ventures、Maven 11和Apollo Capital等機構籌集了450萬美元。目前,Tracer DAO正致力于為“任何有預言機喂價的市場”推出創新型衍生品,并計劃允許普通消費者使用代幣化衍生品對沖通勤和其它家庭開銷的成本。(Cointelegraph)[2021/7/1 0:19:54]
將實際系統作為唯一真實系統,人工構建的系統作為該系統的仿真。這種建模方式對于研究復雜系統的演化規律、發現系統的臨界狀態、研究復雜系統的相變誘因等是一個有效的方法,但是對于從零開始構建一個機制來講并不合適。對于設計一個治理機制來說,更重要的是從眾多可能的結果中選擇最優解,因此需要將不同的人工系統視為等價,并從中選擇演化路徑最優的系統進行研究。
仿真實驗的交互方式效率低下,無法快速迭代機制的更新。通常,利用仿真實驗進行機制更新要遵循從模型到實際系統再到運行數據再到改進后的模型的循環過程。其中,其過程需要耗費大量的精力,而且未經過充分驗證的機制在實際環境中使用也存在風險。
Aletheia是基于數字仿真構建的DAO治理工具,能有效解決去中心化治理系統中機制的建模、實驗與決策相關問題。其基本思想是通過形式化地描述去中心化治理系統的靜態特征與動態特征來構建人工治理系統,并與實際治理系統虛實交互與閉環反饋。Aletheia通過搭建聚集各類通用治理機制的治理規則庫,以及基于鏈上數據挖掘分析出的智能體行為規則庫,并配套進行計算實驗的實驗平臺,從而為實現治理系統與虛擬治理系統的雙向引導和協同演化提供一體化工具。
Layer2 DAO基礎協議Metis宣布對社群貢獻者的獎勵計劃:據官方消息,Layer2 DAO基礎協議Metis5月12日宣布對社群貢獻者的空投獎勵計劃。4月27日前在Metis Alpha測試網中測試過的用戶將有機會獲得空投。根據用戶在Alpha測試網中與Layer2智能合約的交互次數,每個用戶將獲得相應的分數,凡是分數在5分以上的測試用戶都可以獲得數量不等的Metis代幣空投。空投將于5月13日開始進行發放。
Metis Layer2 Alpha測試網上線一個月以來,目前已有168,983次鏈上交易,成立DAC(去中心化公司)超過7000家,生成錢包賬戶接近1.3萬個。Metis將于5月13日在Ignition Launchpad(Paid Network) 和Gate.io Startup進行公募,并于北京時間5月13日晚9點登陸Gate.io進行交易。[2021/5/12 21:50:56]
在Aletheia中,實際運行的系統機制及運行數據將被用來構建一個仿真治理系統,同時構建的還有與該仿真系統平行運行的多個人工系統。不同的人工系統將會代表著不同的參數配置、機制改進、計算實驗等,而仿真系統則可以代表真實系統的演化。
無論是采用哪種方式對DAO進行建模,通常都需要分為四個步驟:智能體建模、實際系統建模、計算實驗構建、人工數據分析。
3.1智能體建模
智能體(Agent)一般是指一個具有自主活動的物理或者抽象的實體,它能感知到自己所處的環境,并能夠通過自身所具備的能力,對環境作出相應的反應。智能體從簡單到復雜通常可以分為三個層次:
被動智能體或“無目標智能體”
具有簡單目標的智能體
認知智能體
在DAO的建模中使用的一般屬于第二類智能體,這類智能體擁有對環境的感知能力,并可以根據環境作出反應。例如,在Futarchy的模擬實驗中使用的零策略智能體,就是一個簡單的二類智能體,它可以依據市場中資產的價格以及隨機生成的期望價格來決定是否購買某一資產。而依據其構建方式不同,智能體又可以分為:
基于反射的智能體:忽略歷史,相應基于事件-條件-行為的規則;
基于模型的智能體:依然是基于事件-條件-行為的規則,但是對環境應有更深刻的理解。一般都會將環境以面向對象的方式編程到模型的規則中。
基于目標的智能體:這類模型擴展了基于模型的智能體,將目標信息及理想情況也編寫到規則邏輯中。
基于效應函數的智能體:這類智能體擁有一個效應函數,并基于最大化效應函數的方式采取行動。
學習智能體:這類智能體具備學習能力,并可以隨著事件不斷學習與周圍環境的交互規則。
但是,無論采用哪種構建方式,一個智能體至少應該包含以下2個組成部分:
感知器。
智能體通過感知器來獲得環境信息。
決策模塊。
決策模塊用來決定智能體如何根據當前的環境信息作出行為。
3.2?實際系統建模
對實際系統的建模根據研究的治理機制及建模方法,可能會多種多樣。通常,系統可以看作是一個離散動態系統,系統中的所有狀態都可以由一組狀態變量表示,如DAO中的提案數量、智能體投票狀態等。而對于DAO來說,一個治理系統一般會包含提案、審核、投票、執行、爭議、仲裁幾個過程的一個或多個。每個模塊,每個過程都可以看作是輸入和輸出都是提案,并且持有一組狀態變量的模塊。
通常,對于實際系統的建模部分會采用UML統一建模語言進行構建,并在代碼中編寫每個模塊的運行邏輯。而Aletheia則采用數據和邏輯分開管理的方法,所有系統數據以及智能體數據都以知識圖譜的方式統一存儲在圖數據庫中,而代碼只負責業務邏輯,這樣的好處有三個:
數據和邏輯分開,數據統一存在在同一個圖譜中,易于管理和遷移。
采用圖譜的方式描述虛擬系統,更加直觀和易于理解。
可以隨時捕捉的整個虛擬系統的狀態,易于分析和擴展。
3.3計算實驗構建
在實際系統仿真的基礎上構建的一個或多個人工系統,每個人工系統都是對原機制的一次探索與嘗試。這種設計的核心優勢在于可以借助數字孿生和計算實驗,快速對治理機制進行迭代更新、實驗與評估等。人工系統的構建方式多種多樣,大體上可以分為兩大類:
通過算法自主演化的方式構建人工系統。
基于遺傳算法,網格搜索等算法等,自主地構建人工系統,依據損失函數對人工系統進行篩選,并與原仿真系統協同演化,最終獲得治理機制的改進的靈感以及治理機制的優缺點的洞察。
通過設置參數、修改機制等方式手工構建人工系統。
這種方式用于對治理機制的驗證、壓力測試以及風險監測。
3.4人工數據分析
人工系統運行過程中會產生大量的人工數據,這些數據雖然并不是真實世界產生的數據,卻是對數據進行全方位測試,可以更好地設計和研究治理機制。
結論
我們腦海中都有一個對現實世界的建模,我們的日常行為其實都是該模型在現實世界中的應用。因此,本文從復雜系統的角度出發,探索如何使用計算機模擬的方式來進行DAO的治理研究。
金色財經合約行情分析 | BTC歷史第三次減半,市場分歧加大:據火幣BTC永續合約行情顯示,截至今日16:00(GMT+8),BTC價格暫報8655美元(-0.14%).
1900/1/1 0:00:00作為科技領域當下非常流行和熱門的話題,元宇宙可以概括為互聯網的自然演變,在這個持續的數字空間網絡中,人們的數字化身將在其中閑逛、工作、謀生并聲稱擁有他們的數字財產.
1900/1/1 0:00:002021年“元宇宙”成功入選由國家語言資源監測與研究中心發布的“2021年度十大網絡用語”,其火爆程度可見一斑,它所描繪的畫卷是人們對互聯網的終極想象.
1900/1/1 0:00:00自從去年roblox提出元宇宙概念之后,大量互聯網巨頭紛紛跟進,雖然元宇宙的發展得到了大多數人的認同,而且還擴展到區塊鏈行業,但是在這一年的時間里,元宇宙也逐漸暴露出不少問題.
1900/1/1 0:00:00本文來自微信公眾號老雅痞。隨著過去一年NFT的興起,有許多新買家可能會陷入陷阱。以下是需要注意的5個警告信號,它們可能告訴你一個NFT項目正在死亡.
1900/1/1 0:00:003月2日消息,區塊鏈基礎設施初創公司Tenderly完成4000萬美元B輪融資,SparkCapital領投.
1900/1/1 0:00:00