作者:OpenAI&TheVerge&Techcrunch
翻譯&分析:阿法兔
*本文6000字左右
GPT-4可以接受圖像和文本輸入,而GPT-3.5只接受文本。
GPT-4在各種專業和學術基準上的表現達到"人類水平"。例如,它通過了模擬的律師考試,分數約為應試者的前10%。
OpenAI花了6個月的時間,利用從對抗性測試項目以及ChatGPT中獲得的經驗,反復調整GPT-4,結果在事實性、可引導性和可控制方面取得了"史上最佳結果"。
在簡單的聊天中,GPT-3.5和GPT-4之間的區別可能微不足道,但是當任務的復雜性達到足夠的閾值時,區別就出來了,GPT-4比GPT-3.5更可靠,更有創造力,能夠處理更細微的指令。
GPT-4能對相對復雜的圖像進行說明和解釋,比如說,從插入iPhone的圖片中識別出一個LightningCable適配器。
圖像理解能力還沒有向所有OpenAI的客戶開發,OpenAI正在與合作伙伴BeMyEyes進行測試。
OpenAI承認,GPT-4并不完美,仍然會對事實驗證的問題產生錯亂感,也會犯一些推理錯誤,偶爾過度自信。
開源OpenAIEvals,用于創建和運行評估GPT-4等模型的基準,同時逐個樣本檢查其性能。
官宣文檔
OpenAI已經正式推出GPT-4,這也是OpenAI在擴大深度學習方面的最新里程碑。GPT-4是大型的多模態模型,盡管GPT-4在許多現實世界的場景中能力不如人類,但它可以在各種專業和學術基準上,表現出近似人類水平的性能。
例如:GPT-4通過了模擬的律師考試,分數約為全部應試者的前10%。而相比之下,GPT-3.5的分數大約是后10%。我們團隊花了6個月的時間,利用我對抗性測試項目以及基于ChatGPT的相關經驗,反復對GPT-4進行調整。結果是,GPT-4在事實性、可引導性和拒絕超范圍解答問題方面取得了有史以來最好的結果
Sam Altman:OpenAI在一段時間內不會開啟訓練GPT-5:4月14日消息,在麻省理工學院的一次活動中,OpenAI首席執行官Sam Altman被問及最近在科技界流傳的一封公開信,該公開信要求像OpenAI這樣的實驗室暫停開發比GPT-4更強大的人工智能系統。這封信強調了對未來系統安全性的擔憂,但遭到了包括一些簽署方在內的許多業內人士的批評。
對此,Altman確認該公司目前沒有訓練GPT-5,且在一段時間內不會進行訓練。[2023/4/14 14:04:49]
在過去兩年里,我們重構了整個深度學習堆棧,并與Azure合作,為工作負荷從頭開始,共同設計了一臺超級計算機。一年前,OpenAI訓練了GPT-3.5,作為整個系統的首次"試運行",具體來說,我們發現并修復了一些錯誤,并改進了之前的理論基礎。因此,我們的GPT-4訓練、運行空前穩定,成為我們首個訓練性能可以進行提前準確預測的大模型。隨著我們繼續專注于可靠擴展,中級目標是磨方法,以幫助OpenAI能夠持續提前預測未來,并且為未來做好準備,我們認為這一點,對安全至關重要。
我們正在通過ChatGPT和API發布GPT-4的文本輸入功能,為了能夠更大范圍地提供圖像輸入功能,我們正在與合作伙伴緊密合作,以形成一個不錯的開端。我們計劃開源OpenAIEvals,也是我們自動評估AI模型性能的框架,任何人都可以提出我們模型中的不足之處,以幫助它的進一步的改進。
能力
在簡單閑聊時,也許不太好發現GPT-3.5和GPT-4之間的區別。但是,當任務的復雜性達到足夠的閾值時,它們的區別就出來了。具體來說,GPT-4比GPT-3.5更可靠,更有創造力,能夠處理更細微的指令。
為了理解這兩個模型之間的差異,我們在各種不同的基準上進行了測試,包括模擬最開始那些為人類設計的考試。通過使用最新的公開測試還包括購買2022-2023年版的練習考試來進行,我們沒有為這類考試給模型做專門的培訓,當然,考試中存在很少的問題是模型在訓練過程中存在的,但我們認為下列結果是有代表性的。
Imperva:OpenSea漏洞允許用戶對平臺上NFT交易者的身份進行去匿名化處理:3月12日消息,安全公司 Imperva 揭示了 OpenSea 的一個漏洞,該漏洞允許用戶對平臺上 NFT 交易者的身份進行去匿名化處理。此次漏洞是由 OpenSea 使用的 iFrame-resizer 庫配置錯誤引起的,錯誤配置導致存在跨站點搜索漏洞,黑客利用該漏洞可獲取用戶身份。目前,OpenSea 已經解決了這個問題,但不確定是否有用戶信息泄露。[2023/3/12 12:57:54]
我們還在為機器學習模型設計的傳統基準上,對GPT-4進行了評估。GPT-4大大超過現有的大語言模型,與多數最先進的模型并駕齊驅,這些模型包括針對基準的制作或額外的訓練協議。
由于現有的大多數ML基準是用英語編寫的,為了初步了解其他語言的能力,我們使用AzureTranslate將MMLU基準:一套涵蓋57個主題的14000個選擇題,翻譯成了各種語言。在測試的26種語言中的24種語言中,GPT-4的表現優于GPT-3.5和其他大模型的英語表現,這種優秀表現還包括類似拉脫維亞語、威爾士語和斯瓦希里語等等。
我們一直在內部使用GPT-4,發現它對支持、銷售、內容審核和編程等功能會產生很大影響,我們還在用它來協助人類評估AI的輸出,這就是我們調整戰略的第二階段的開始。
OpenSea撤銷更新“NFT創作者最多只能創建5個NFT系列”:1月28日消息,OpenSea宣布撤銷“NFT創作者最多只能創建5個NFT系列”。OpenSea解釋此前準備推出該更新表示,最近看到濫用此功能的情況呈指數增長。使用該工具創建的超過 80% 的項目是剽竊作品、虛假收藏和垃圾郵件。OpenSea為沒有在推出更新之前發布預覽進行道歉。此外,OpenSea表示,除了撤銷決定外,還在研究多種解決方案,以確保支持創作者,同時阻止不良行為者。OpenSea承諾在推出之前與用戶一起預覽這些更改,并將邀請用戶反饋。
此前消息,OpenSea發布重大更新:NFT創作者最多只能創建5個NFT系列。[2022/1/28 9:19:07]
視覺輸入
GPT-4可以接受文本和圖像的提示語,這與純文本設置平行。比如說,可以讓用戶指定任何視覺或語言任務,它可以生成文本輸出,給定的輸入包括帶有文字和照片的文件、圖表或屏幕截圖,GPT-4表現出與純文本輸入類似的能力。此外,還可以應用在為純文本語言模型開發的測試時間技術,包括少數幾個鏡頭和CoT的Prompting,不過目前圖像輸入仍然屬于研究方面預覽,沒有像C端公開產品。
下列圖片顯示了一個"LightningCable"適配器的包裝,有三個面板。
面板1:一個帶有VGA接口的智能手機插在其充電端口。
面板2:"LightningCable"適配器的包裝上有一張VGA接口的圖片。
面板3:VGA連接器的特寫,末端是一個小的Lightning連接器。
Celer cBridge與OpenDAO達成合作,通過建立開放原生資產標準以實現多鏈擴展:1月5日消息,由二層擴容平臺Celer推出的跨鏈橋cBridge宣布與去中心化自治組織OpenDAO達成合作,通過建立開放的原生資產標準以實現多鏈擴展,拒絕供應商鎖定。
用戶現可通過cBridge將SOS在以太坊、Avalanche、BSC 、Metis、Fantom、Moonriver、Celo、OEC、HECO、xDAI進行高速低成本的跨鏈橋接。[2022/1/5 8:27:34]
這張圖片的搞笑性質來自于將一個大的、過時的VGA連接器插入一個小的、現代的智能手機充電端口..因此看起來很荒謬
通過在一套狹窄的標準學術視覺基準上,對GPT-4的性能進行評估,并且對它進行預覽。然而,這些數字并不能代表其的能力范圍,因為我們發現,這個模型能夠處理很多的新的和令人興奮的任務,OpenAI計劃很快發布進一步的分析和評估數字,以及對測試時間技術效果的徹底調查結果。
可控制的AI
我們一直在努力實現關于定義AI行為那篇文章中,所概述的計劃的每個方面,包括AI的可控制性。與經典的ChatGPT個性的固定言語、語氣和風格不同,開發者現在可以通過在"系統"消息中描述這些方向,來規定自己的AI的風格和任務。系統消息允許API用戶在范圍內,大幅對用戶體驗進行定制,我們將持續改進。
局限性
盡管能力驚人,不過,GPT-4仍存在與早期GPT模型類似的限制。最重要的是,它仍然不是完全可靠的。在使用語言模型的輸出時,特別是在高風險的情況下,應該非常小心謹慎,比如說:需要人類審查,完全避免高風險的使用)以及需要與特定的使用案例的需求相匹配。
盡管各類情況仍然存在,但相較于以前的模型,GPT-4大大減少了hallucinations。在我們內部的對抗性事實性評估中,GPT-4的得分比我們最新推出的GPT-3.5高40%。
Twitter的140件NFT在OpenSea交易量突破500萬美元:8月10日消息,Twitter在6月30日發布的NFT系列“The 140 Collection”在OpenSea NFT市場上創造了1700 ETH(530萬美元)的總交易量。雖然這個數字遠低于Axis Infinity和CryptoPunks等NFT項目,但對于僅140件NFT來說,這是一個相當大的交易量。該系列所有代幣都是各種與Twitter相關的短GIF,包括動畫和與平臺品牌某些方面互動的角色。該系列包含七種不同的設計,每種有20件NFT代幣,Twitter仔細挑選了140名對宣布贈送NFT的主要推文做出回應的用戶。不久之后,獲選者成立了一個組織,目標是讓他們的新數字資產發揮最大價值。
此前消息,推特官方賬號在6月30日將自己的推特簡介更改為“整天發布 NFT(dropping NFTs all day)”,并發推表示“為你們中的140人提供140個免費的NFT(140 free NFTs for 140 of you)”。(The Block)[2021/8/10 1:46:43]
可控制的AI
GPT-4的基礎模型在這項任務中只比GPT-3.5略勝一籌;然而,在經過RLHF的后期訓練后,卻有很大差距。該模型在其輸出中會有各種偏差,我們在這些方面已經取得了進展,但仍有更多工作要做。根據我們最近的博文,我們的目標是使我們建立的人工智能系統具有合理的默認行為,以反映廣泛的用戶價值觀,允許這些系統在廣泛的范圍內被定制,并獲得公眾對這些范圍的意見。
GPT-4通常缺乏對其絕大部分數據截止后發生的事件的了解,也不會從其經驗中學習。它有時會犯一些簡單的推理錯誤,這似乎與這么多領域的能力不相符,或者過于輕信用戶的明顯虛假陳述。有時它也會像人類一樣在困難的問題上失敗,例如在它產生的代碼中引入安全漏洞。GPT-4也可能在預測中自信地犯錯。
風險和緩解措施
我們一直在對GPT-4進行迭代,使其從訓練開始就更加安全,保持一致性,我們所做的努力包括預訓練數據的選擇和過濾、評估,邀請專家參與,對模型安全改進、監測,以及執行。
GPT-4與過去的模型會存在類似風險,如生產有害的建議、錯誤代碼或不準確的信息。然而,GPT-4的額外能力還導致了新的風險面。為了明確這些風險的具體情況,我們聘請了50多位來自人工智能對接風險、網絡安全、生物風險、信任和安全以及國際安全等領域的專家對該模型進行對抗性測試。他們的參與,使我們能夠測試模型在高風險領域的行為,這些領域需要專業知識來評估。來自這些領域專家的反饋和數據,為我們緩解和改進模型提供了依據。比如說,我們已經收集了額外的數據,以提高GPT-4拒絕有關如何合成危險化學品的請求的能力。
GPT-4在RLHF訓練中加入了一個額外的安全獎勵信號,通過訓練模型來拒絕對此類內容的請求,從而減少有害產出。獎勵是由GPT-4的分類器提供的,它能夠判斷安全邊界和安全相關提示的完成方式。為了防止模型拒絕有效的請求,我們從不同的來源收集多樣化的數據集,并在允許和不允許的類別上應用安全獎勵信號。
與GPT-3.5相比,我們的緩解措施大大改善了GPT-4的許多安全性能。與GPT-3.5相比,我們將模型對非法內容的請求的響應傾向,降低了82%,而GPT-4對敏感請求的響應符合我們的政策的頻率提高了29%
總的來說,我們的模型級干預措施增加了誘發不良行為的難度,但仍然存在"越獄"的情況,以產生違反我們使用指南的內容。隨著人工智能系統的風險的增加,在這些干預措施中實現極高的可靠性將變得至關重要。目前重要的是,用部署時間的安全技術來補充這些限制,如想辦法監測。
GPT-4和后續模型,很有可能對社會產生正面或者負面的影響,我們正在與外部研究人員合作,以改善我們對潛在影響的理解和評估,以及建立對未來系統中可能出現的危險能力的評估。我們將很快分享我們對GPT-4和其他人工智能系統的潛在社會和經濟影響的更多思考。
訓練過程
和之前的GPT模型一樣,GPT-4基礎模型的訓練是為了預測文檔中的下一個單詞,并使用公開的數據以及我們授權的數據進行訓練。這些數據是來自于極大規模的語料庫,包括數學問題的正確和錯誤的解決方案,弱的和強的推理,自相矛盾的和一致的聲明,以及種類繁多的意識形態和想法。
因此,當被提示有一個問題時,基礎模型可以以各種各樣的方式作出反應,而這些反應可能與用戶的意圖相去甚遠。為了使其與用戶的意圖保持一致,我們使用人類反饋的強化學習對模型的行為進行微調。
注意,模型的能力似乎主要來自于預訓練過程,RLHF并不能提高考試成績。但是對模型的引導來自于訓練后的過程--基礎模型需要及時的工程,甚至知道它應該回答問題。
可預測的擴展
GPT-4項目的一大重點是建立一個可預測擴展的深度學習棧。主要原因是,對于像GPT-4這樣非常大的訓練運行,做大量的特定模型調整是不可行的。我們對基礎設施進行了開發和優化,在多種規模下都有非常可預測的行為。為了驗證這種可擴展性,我們提前準確地預測了GPT-4在我們內部代碼庫中的最終損失,方法是通過使用相同的方法訓練的模型進行推斷,但使用的計算量要少10000倍。
我們認為,準確預測未來的機器學習能力是安全的一個重要部分,相對于其潛在的影響,它沒有得到足夠的重視。我們正在擴大我們的努力,開發一些方法,為社會提供更好的指導,讓人們了解對未來系統的期望,我們希望這成為該領域的一個共同目標。
開放式人工智能評估
我們正在開源OpenAIEvals,這是我們的軟件框架,用于創建和運行評估GPT-4等模型的基準,同時逐個樣本檢查其性能。我們使用Evals來指導我們模型的開發,我們的用戶可以應用它來跟蹤不同模型版本和不斷發展的產品集成的性能。例如,Stripe已經使用Evals來補充他們的人工評估,以衡量他們的GPT驅動的文檔工具的準確性。
因為代碼都是開源的,Evals支持編寫新的類來實現自定義的評估邏輯。然而,根據我們自己的經驗,許多基準都遵循一些"模板"中的一個,所以我們也包括了內部最有用的模板。一般來說,建立一個新的評估的最有效方法是將這些模板中的一個實例化,并提供數據。我們很高興看到其他人能用這些模板和Evals更廣泛地建立什么。
我們希望Evals成為一個分享和眾包基準的工具,最大限度地代表廣泛的故障模式和困難任務。作為后續的例子,我們已經創建了一個邏輯謎題評估,其中包含GPT-4失敗的十個提示。Evals也與實現現有的基準兼容;我們已經包括了幾個實現學術基準的筆記本和一些整合CoQA的變化作為例子。
我們邀請大家使用Evals來測試我們的模型,并提交最有趣的例子。我們相信Evals將成為使用和建立在我們的模型之上的過程中不可或缺的一部分,我們歡迎直接貢獻、問題和反饋。
ChatGPTPlus
ChatGPTPlus用戶將在chat.openai.com上獲得有使用上限的GPT-4權限。我們將根據實際需求和系統性能調整確切的使用上限,但我們預計容量將受到嚴重限制。
根據我們看到的流量模式,我們可能會為更高的GPT-4使用量引入一個新的訂閱級別,我們也希望在某個時候提供一定數量的免費GPT-4查詢,這樣那些沒有訂閱的用戶也可以嘗試。
API
要獲得GPT-4的API,請可以去OpenAI的官方Waitlist上注冊。
結論
我們期待著GPT-4成為一個有價值的工具,通過為許多應用提供動力來改善人們的生活。還有很多工作要做,我們期待著通過社區的集體努力,在這個模型的基礎上進行建設、探索和貢獻,共同對模型進行改進。
參考文獻:1.https://openai.com/research/gpt-4
2.https://techcrunch.com/2023/03/14/openai-releases-gpt-4-ai-that-it-claims-is-state-of-the-art/
3.https://www.theverge.com/2023/3/14/23638033/openai-gpt-4-chatgpt-multimodal-deep-learning
3月14日,dYdX社區投票通過DIP-20提案,決定將交易獎勵減少45%,剩余的55%獎勵將由國庫留存,并可經由社區投票改做他用,其中贊成票比例為83%.
1900/1/1 0:00:00作者:IvesDuran“只需要鍵入簡單的語言描述,只需短短幾分鐘,便可生成畫作。”這種利用人工智能作畫的技術,在微博、小紅書等社交媒體上火了起來.
1900/1/1 0:00:00金色財經報道,據英國金融時報報道,瑞銀提出以最高10億美元收購瑞信。瑞士當局正計劃修改該國法律,繞過股東對該交易的投票,因急于在周一之前敲定交易.
1900/1/1 0:00:00為了支持美國企業和家庭,美國聯邦儲備委員會周日宣布,它將向符合條件的存款機構提供額外資金,以幫助確保銀行有能力滿足所有存款人的需求.
1900/1/1 0:00:00FVM?如何與?Gas?經濟緊密聯系Filecoin虛擬機的啟動可以讓用戶可編程智能合約落地到?Filecoin?區塊鏈上.
1900/1/1 0:00:00文章作者:AmyCastorarchive要使臭名昭著的能源消耗型加密貨幣的效率大大提高,沒有任何技術障礙,只是一個社會障礙。去年,以太坊走向綠色環保路線.
1900/1/1 0:00:00