過去,初創企業憑借其速度、靈活度和創業文化,擺脫組織慣性桎梏,長期引領著技術創新。然而,這一切被人工智能時代改寫。迄今為止,突破性 AI 產品的締造者都是諸如 Microsoft 的 OpenAI、Nvidia、Google 甚至 Meta 這樣的傳統科技巨頭。
發生了什么?為什么這一次巨頭贏過了初創?初創企業可以寫出優秀代碼,但與科技巨頭相比,它們面臨多種阻礙:
計算成本居高不下
AI 發展存在反向凸角:由于缺少必要的方針,圍繞 AI 社會影響的擔憂和不確定性阻礙了創新
AI 黑盒問題
大型科技公司建立的“數據護城河”形成進入壁壘
那么,為什么需要區塊鏈技術出場?它與人工智能的交集在哪?雖然不能一次性解決所有問題,但Web3中的分布式物理基礎設施網絡(DePIN)為解決上述問題創造了條件。下文將闡述 DePIN 背后的技術如何助力人工智能,主要從四個維度:
降低基礎設施成本
驗證創作者和人格
填補AI 民主和透明度
設置數據貢獻獎勵機制
下文中:
“web3”指下一代互聯網,區塊鏈技術與其他現有技術是其有機組成。
“區塊鏈”指去中心化和分布式賬本技術。
“加密”指利用代幣機制進行激勵和去中心化的做法。
每一波技術創新的引子都是某種昂貴的東西變得廉價到可以浪費。
——社會的技術債務和軟件的古騰堡時刻,來自 SK Ventures
基礎設施的可負擔性有多重要(人工智能的基礎設施指計算、傳輸和存儲數據的硬件成本),Carlota Perez 的技術革命理論有指明,該理論提出技術突破包含兩個階段:
來源:Carlota Perez 的技術革命理論
安裝階段以大量風險投資、基礎設施建設和“推動式”市場推廣(GTM)策略為特征,因為客戶不了解新技術的價值主張。
安全團隊:gnosisSafe金庫合約0xF6eb0被利用:金色財經報道,據CertiK官方推特發布消息稱,一個gnosisSafe金庫合約0xF6eb0被利用。漏洞利用者地址:0xb9c77db3C0e1254D073E65dc0455ba6DDd3ce385。漏洞利用者已獲得9.76萬美元。[2023/8/13 16:23:11]
部署階段以基礎設施供應的大量增加為特征,降低拉新門檻,并采用“拉動式”市場推廣(GTM)策略,表明產品市場匹配度高,客戶期待更多尚未成型的產品。
既然 ChatGPT 等嘗試已證明市場契合度和客戶需求,人們可能覺得 AI 已經進入部署階段。然而,AI 還缺少重要一環:過剩的基礎設施供價格敏感的初創企業進行搭建和嘗試。
當前物理基礎設施領域主要由垂直一體化寡頭壟斷,包括 AWS、GCP、Azure、Nvidia、Cloudflare、Akamai 等,行業利潤率高,據估計AWS 在商品化計算硬件上的毛利率為 61% 。所以 AI 領域、尤其是 LLM 領域的新進入者要面對及其高昂的計算成本。
ChatGPT 一次訓練的成本估計在 4 百萬美元,硬件推理運營成本約 70 萬美元/天。
Bloom 第二版可能需要花費 1000 萬美元進行訓練和重新訓練。
如果 ChatGPT 進入 Google 搜索,谷歌營收將減少 360 億美元,巨額利潤將從軟件平臺(Google)向硬件提供商(Nvidia)轉移。
來源:層層分析— LLM 搜索架構與成本
DePIN 網絡如 Filecoin(起源于 2014 年的 DePIN 先驅,專注集合互聯網級硬件,服務于分布式數據存儲)、Bacalhau、Gensyn.ai、Render Network、ExaBits(用于匹配 CPU/GPU 供需的協調層)可以通過以下三個方面節約 75% 至 90% +的基礎設施成本:
alETH池黑客再次向Alchemix返還3819枚alETH:8月4日消息,被標記為Alchemix/CurveFinance Exploiter的黑客再次向Alchemix Finance: Dev返還3,819.55枚alETH,約合667萬美元。
此前報道,大約半小時之前,該黑客已向Alchemix Finance: Dev返還1000枚alETH。
7 月底,Alchemix表示,alETH/ETH Curve池遭遇攻擊損失約5000枚ETH,Alchemix金庫資金安全。[2023/8/5 16:19:43]
1. 推動供應曲線,激發市場競爭
DePIN 為硬件供應商成為服務提供商提供了平等機會。它創建了一個人人可以作為“礦工”加入,用 CPU/GPU 或存儲能力可換取經濟報酬的市場,從而給現有提供商帶來競爭。
雖然像 AWS 這樣的公司無疑在用戶界面、運營和垂直整合方面享有 17 年的先發優勢,但是DePIN 吸引了無法接受中心化供應商客定價的新戶群。就像 Ebay 不直接與 Bloomingdale 競爭,而是提供更經濟的替代品來滿足類似需求,分布式存儲網絡并不取代中心化供應商,而是旨在服務于價格敏感的用戶群體。
2.通過加密經濟設計促進市場經濟平衡
DePIN 創建的補貼機制能引導硬件供應者參與網絡,從而降低最終用戶的成本。究其原理,我們可以看看 AWS 和 Filecoin 在Web2和Web3中存儲提供者的成本和收入。
客戶獲得降價:DePIN 網絡營造了競爭性市場,引入Bertrand 式競爭,從而降低客戶支付費用。相比之下,AWS EC 2 需要約 55% 的利潤率和 31% 的總體利潤率來維持運營。DePIN 網絡提供的Token 激勵/區塊獎勵也是新的收入來源。在 Filecoin 的背景下,存儲提供者托管越多真實數據越能獲得區塊獎勵(代幣)。因此,存儲提供者有動力吸引更多客戶達成交易增加收入。幾個新興計算 DePIN 網絡的代幣結構仍未公開,但很可能遵循類似模式。類似網絡包括:
FTX披露機構債權人完整名單,包括Apple、Netflix和Coinbase等公司:1月26日消息,加密貨幣交易所FTX的財務顧問在一份法庭文件中披露了該公司機構債權人的完整名單。這份長達一百多頁的文件按字母順序排列,包括Apple、WeWork等上市科技公司,以及眾多數字資產公司,例如Coinbase、幣安資本管理公司、Chainalysis、Yuga Labs、Doodles 和 Silvergate Bank。
此外,一些被提及的公司實例可能與 FTX 欠下的商品和服務款項有關。Pharmacy CVS 被列為該交易所的公司債權人之一,還有 Netflix 和 Comcast。
據悉,該名單不包括關于債權人矩陣中每家企業所欠金額的具體金額,也不包括涉及個人客戶的特定信息,被列入名單的公司并不一定意味著該實體擁有 FTX 交易賬戶。(Decrypt)[2023/1/26 11:30:29]
Bacalhau:將計算引入數據存儲位置的協調層,避免移動大量數據。
exaBITS:服務于 AI 和計算密集型應用程序的分布式計算網絡。
Gensyn.ai:深度學習模型計算協議。
3. 降低間接成本:Bacalhau、exaBITS 等 DePIN 網絡以及 IPFS/內容尋址存儲的優勢包括:
釋放潛在數據的可用性:由于傳輸大型數據集的帶寬成本高,目前大量數據未被開發,比如體育場館產生的大量事件數據。DePIN 項目可以現場處理數據并僅傳輸有意義的輸出,發掘潛在數據的可用性。
降低運營成本:通過本地獲取數據來降低數據輸入、傳輸和導入/導出成本。
最小化敏感數據共享中的人工作業:如果醫院 A 和 B 需要將各自患者的敏感數據進行組合分析,它們可以使用 Bacalhau 協調 GPU 算力,直接在本地處理敏感數據,而不必通過繁瑣的行政流程與對方進行個人身份信息(PII)交換。
無需重計算基礎數據集:IPFS/內容尋址存儲自帶去重、溯源和驗證數據的能力。有關 IPFS 的功能和性價比可參考這篇文章。
AI 生成摘要:AI 需要 DePIN 提供的經濟實惠的基礎設施,目前基礎設施市場由垂直一體化的寡頭壟斷。像 Filecoin、Bacalhau、Render Network、ExaBits 這樣的 DePIN 網絡使成為硬件供應商的機會民主化,引入競爭,通過加密經濟設計維護市場經濟平衡,讓成本降低 75% -90% 以上,并降低了間接成本。
知情人士:債權人將可以通過新網站向3AC提出索賠:6月29日消息,已任命2名Teneo特工來領導3AC的清算流程。據一位知情人士透露,Teneo現在將建立一個網站,債權人可以通過該網站向3AC提出索賠。(Blockworks)[2022/6/29 1:39:51]
一份近期調研顯示,50% 的 AI 學者認為 AI 給人類帶來毀滅性傷害的可能性超過 10% 。
人們需要警醒,A.I.已經引發社會混亂,而且仍缺乏監管或技術規范,這種情況被稱為“反向凸角”。
比如,在這段 Twitter 視頻中,播客主持人 Joe Rogan 與保守評論員 Ben Shapiro 在就電影《料理鼠王》進行著辯論,然而這段視頻是 AI 生成的。
來源:Bloomberg
值得注意的是,A.I.的社會影響力遠不止虛假博客、對話和圖像帶來的問題:
2024 年美國大選期間,AI 生成的 deepfake 競選內容首次達到了以假亂真的效果。
參議員 Elizabeth Warren 的一段視頻經過編輯,讓她“說”出了"共和黨人不應該被允許投票"這樣的話(已辟謠)。
語音合成的拜登的聲音批評跨性別女性。
一群藝術家對 Midjourney 和 Stability AI 提起了集體訴訟 ,指控其未經授權使用藝術家的作品來訓練 AI,侵犯版權并威脅藝術家生計。
AI 生成的由 The Weeknd 和 Drake 合唱的歌曲“Heart on My Sleeve”在流媒體平臺上走紅,但隨后被下架。當新技術在沒有規范的情況下進入主流,就會造成諸多問題,版權侵犯就屬于“反向凸角”問題。
那么我們能否在Web3中加入 AI 的相關規范?
利用加密鏈上來源證明進行人格證明和創作者證明
NFT交易平臺Golom將于6月啟動交易激勵計劃:5月26日消息,NFT交易平臺Golom宣布將于6月啟動交易激勵計劃,將從北京時間2022年6月2日4:00至7月1日4:00期間依據在Golom上的交易量分配GOLOM代幣總量的5%作為激勵。此外,據項目文檔顯示,Golom還將向在其他NFT市場進行過NFT交易,且在以太坊區塊13330090(2021年10月1日)至14497033(2022年3月31日)之間交易量超過10ETH的用戶空投總量15%的代幣。Golom上的交易手續費為0.5%,手續費收入將全部分配給GOLOM代幣質押者。[2022/5/26 3:42:40]
讓區塊鏈技術真正發揮作用——作為一個包含不可篡改鏈上歷史記錄的分布式賬本,數字內容的真實性可以通過內容加密證明得到驗證。
數字簽名作為創作者證明和人格證明
要識別 deepfake,可用原始內容創作者獨有的數字簽名生成加密證明,簽名可以使用只有創作者知曉的私鑰創建,并可由對所有人公開的公鑰進行驗證。有了簽名就可以證明內容是由原始創作者創建,不論創建者是人類還是 AI,還可以驗證授權或未授權的對內容的更改。
利用 IPFS 和默克爾樹進行真實性證明
IPFS 是使用內容尋址和默克爾樹引用大型數據集的分布式協議。為了證明文件內容收到、更改,會生成一個默克爾證明,即一串哈希,顯示特定的數據塊在默克爾樹中的位置。每次更改,都會在默克爾樹中增加一個哈希,提供了文件修改的證明。
加密方案的痛點是激勵機制,畢竟,識別出 deepfake 制造者雖然能減少負面社會影響,但不會帶來同等的經濟利益。這份責任很可能落在 Twitter、Meta、Google 等主流媒體分發平臺上,事實也的確如此。那么我們為什么需要區塊鏈?
答案是區塊鏈的加密簽名和真實性證明更加有效、可驗證和確定。目前,檢測 deepfake 的過程主要通過機器學習算法(如 Meta 的“Deepfake Detection Challenge”、Google 的“Asymmetric Numeral Systems” (ANS)和 c 2 pa:https://c 2 pa.org/)來識別視覺內容中的規律和異常,但時常不夠準確,落后于 deepfake 發展速度。一般需要人工審核來確定真實性,低效且昂貴。
如果有一天每條內容都有加密簽名,每個人都能可驗證地證明創作來源,標記篡改或偽造行為,那我們將迎來美麗的世界。
AI 生成摘要:AI 可能對社會構成重大威脅,尤其是 deepfake 和未授權使用內容,而Web3技術,如使用數字簽名的創作者證明和使用 IPFS 和默克爾樹的真實性證明,可以驗證數字內容的真實性,防止未經授權的更改,為 AI 提供規范。
今天的 AI 是由專有數據和專有算法構成的黑盒。大型科技公司 LLM 的封閉性扼殺了我眼中的“AI 民主”,即每個開發者甚至用戶都能為 LLM 模型貢獻算法和數據,并在模型盈利時獲得部分利潤(相關文章)。
AI 民主=可視性(能看到輸入模型的數據和算法)+貢獻(能向模型貢獻數據或算法)。
AI 民主的目的是讓生成式 AI 模型對公眾開放、與公眾相關、為公眾所有。下表對比了 AI 現狀與通過Web3區塊鏈技術能實現的未來。
目前——
對于客戶:
單向接收 LLM 輸出
無法控制個人數據如何被使用
對于開發者:
可組合性低
ETL 數據處理不可追溯,難復現
數據貢獻來源僅限于數據所有機構
閉源模型只能通過 API 付費訪問
分享數據輸出缺乏可驗證性,數據科學家 80% 的時間用于低端數據清洗
結合區塊鏈后——
用戶可提供反饋(比如偏見、內容審核、針對輸出的顆粒度反饋)作為微調依據
用戶可選擇貢獻數據換取模型盈利后的利潤
分布式數據管理層:眾包重復耗時的數據標記等數據準備工作
可視性&組合&微調算法的能力,借助可驗證源(可以看到所有改動的防篡改歷史記錄)
數據主權(通過內容尋址/IPFS 實現)和算法主權(例如 Urbit 實現了數據和算法的點對點組合和可移植性)
加速 LLM 創新,從基礎開源模型的各種變體中加速 LLM 創新。
可復現訓練數據輸出,通過區塊鏈對過去 ETL 操作和查詢的不可變記錄(如 Kamu)實現。
有人說Web2的開源平臺也提供了一種折中方案,但其效果并不理想,相關討論可見 exaBITS 的博文。
AI 生成摘要:大型科技公司封閉的 LLM 扼殺了“AI 民主”,即每個開發者或用戶都能夠為一個 LLM 模型貢獻算法和數據,并在模型盈利時獲得部分利潤。AI 應該對公眾開放,與公眾相關,為公眾所有。借助區塊鏈網絡,用戶能夠提供反饋,為模型貢獻數據換取變現后的利潤,開發者也能獲得可視性和可驗證源,從而組合和微調算法。內容尋址/IPFS 和 Urbit 等Web3創新將實現數據和算法主權。通過區塊鏈對過去 ETL 操作和查詢的不可變記錄,訓練數據輸出的可復現性也將成為可能。
今天,最有價值的消費者數據為大型科技公司的專有資產,構成其核心商業壁壘。科技巨頭沒有動力將這些數據與外部方共享。
那么,為什么我們不能直接從數據創造者或用戶那里獲取數據呢?為什么我們不能把數據變成公共資源,貢獻數據將數據開源化供數據科學家使用?
簡單來說是因為缺乏激勵機制和協調機制。維護數據和執行 ETL(提取、轉換和加載)是一大筆間接成本。事實上,僅數據存儲就將在 2030 年成為價值 7770 億美元的行業,這還不包括計算成本。沒有人會無償承擔數據處理的工作和成本。
不妨看看 OpenAI,最初設定是開源非盈利,但變現困難無法覆蓋成本。2019 年,OpenAI 不得不接受微軟注資,算法不再對公眾的開放。預計到 2024 年,OpenAI 盈利將達 10 億美元。
Web3引入了名為“dataDAO”的新機制,促進了 AI 模型所有者和數據貢獻者之間的收入再分配,為眾包數據貢獻創建了激勵層。由于篇幅限制,此處不會展開,想要了解可閱讀下方兩篇文章:
How DataDAO works/DataDAO 原理,作者是 Protocol Labs 的 HQ Han
How data contribution and monetization works in web3/web3數據貢獻和變現如何運作,我在這篇深入討論了 dataDAO 的機制、欠缺和機遇
總的來說,DePIN 另辟蹊徑,為推動Web3和 AI 創新提供了新的硬件能源。盡管科技巨頭主導了 AI 行業,但新興參與者可以利用區塊鏈技術加入競爭:DePIN 網絡降低準入門檻的方式包括降低計算成本;區塊鏈的可驗證和分布式特性使真正的開放式 AI 成為可能;dataDAO 等創新機制激勵數據貢獻;區塊鏈的不可變性和防篡改特性提供了創造者身份證明,打消人們對 AI 負面社會影響的擔憂。
FilecoinNetwork
個人專欄
閱讀更多
金色早8點
Odaily星球日報
金色財經
Block unicorn
DAOrayaki
曼昆區塊鏈法律
Salesforce 再度重倉 AI 賽道,擴大 AIGC 風投基金規模至 5 億美元。 6 月 12 日,Salesforce 通過官網宣布,推出全新 AI Clou.
1900/1/1 0:00:00來源:Forkast 編譯:hiiro, SevenUpDAO根據美國數字美元基金會的聯合創始人Giancarlo的說法,中央銀行數字貨幣(CBDC)是未來的貨幣.
1900/1/1 0:00:00來源:bitcoinist;編譯:區塊鏈騎士隨著法律網絡的持續收緊,美國檢察官要求對已倒閉的Crypto交易所FTX的創始人Sam Bankman-Fried進行一場單獨的審判.
1900/1/1 0:00:00Azuki的地板價最近7天內下跌了約 44%,目前為9.4ETH。讓我們從數據角度探討下其背后的原因.
1900/1/1 0:00:00從最早的比特幣,到萊特幣、前期的以太坊等,彼時的硬件挖礦(算力)皆以 PoW 共識機制為基礎,也讓礦工成為獲取 token 的最“上游”的角色.
1900/1/1 0:00:00▌幣安美國:SEC尋求資產凍結之舉將令公司陷入困境幣安美國(binance.us)敦促聯邦法官拒絕美國證券交易委員會(SEC)要求凍結該加密貨幣交易所數十億美元資產的請求.
1900/1/1 0:00:00